

Outline

- Background
- Energy Transition
- Hydrogen utilization in various sectors
- Hydrogen as a fuel
- Introduction of BES at HAN

HAN_UNIVERSITY OF APPLIED SCIENCES 2

Background

"No stimulus to man's advancement ever approached that given by the acquisition of:

Fire"

Ref: Walter Hough, The Distribution of Man in Relation to the Invention of Fire- Making Methods, American Anthropologist, Vol.18, No. 2 ,1916, pp. 257-263

In 2022, process heat was responsible for about two-thirds of industrial greenhouse gas emissions

3

Future of global energy

The future of global energy is dominated by four trends:

- Declining role for hydrocarbons,
- Rapid expansion in renewables,
- Increasing electrification,
- growing use of low-carbon hydrogen

	Fossil fuels	Renewables
	Share of primary energy	Share of primary energy
	80%	80%
	60%	60%
	40%	40%
	20%	20%
	0% 2019 2025 2030 2035 2040 2045 2050	0%
	Electricity	Low-carbon hydrogen
Source: BP Energy Outlook 2023	Share of total final consumption	Share of primary energy used in production of hydrogen
	60%	25%
	40%	20% - Net Zero
	20%	10%
	0%	
	2019 2025 2030 2035 2040 2045 2050	2019 2025 2030 2035 2040 2045 2050
		HAN_UNIVERSITY OF APPLIED SCIENCES

HAN_UNIVERSITY OF APPLIED SCIENCES

5

Energy transition from 2019 to 2050: Key points

- Share of *fossil fuels* in primary energy reduces from 80% to between 55-20% by 2050.
 - \rightarrow Combustion and fossil fuels will still play important role.
- Share of **renewables** in global primary energy increases from around 10% to between 35-65% by 2050
 - \rightarrow wind, solar, bioenergy and geothermal are major renewables but require energy storage means.
- Share of <u>electricity</u> in total final energy consumption increases from 20% to between a 33-50% by 2050.
 - \rightarrow Global electricity generation will be dominated by wind and solar.
- Share of primary energy used in hydrogen increases to 13-21% by 2050.

 \rightarrow According to BP, Hydrogen plays the role of an energy carrier for hard-to-electrify sectors.

5

Hydrogen B	Basics	Natural electrolMajor l	gas reforming (bl lysis (green hydrog nydrogen uses are	ue hydrogen) and gen) are developin listed below:	water g rapidly.
United States and W	orld Hydrogen	Consumptions	by End-Use Ca	tegory	
United States and W	orld Hydrogen United	Consumptions I States	by End-Use Ca World	tegory I Total	U.S. Share of
United States and W Captive Users	orld Hydrogen United Billion m ³	Consumptions l States Share (%)	by End-Use Ca World Billion m ³	tegory l Total Share (%)	U.S. Share of World Total (%)
United States and W Captive Users Ammonia producers	orld Hydrogen United Billion m ³ 33.7	Consumptions I States Share (%) 38	by End-Use Ca World Billion m ³ 273.7	tegory I Total Share (%) 61	U.S. Share of World Total (%) 12
United States and W Captive Users Ammonia producers Oil refiners	orld Hydrogen United Billion m ³ 33.7 32.9	Consumptions I States Share (%) 38 37	by End-Use Ca World Billion m ³ 273.7 105.4	tegory I Total Share (%) 61 23	U.S. Share of World Total (%) 12 31
United States and W Captive Users Ammonia producers Oil refiners Methanol producers	orld Hydrogen United Billion m ³ 33.7 32.9 8.5	Consumptions I States Share (%) 38 37 10	by End-Use Ca World Billion m ³ 273.7 105.4 40.5	tegory I Total Share (%) 61 23 9	U.S. Share of World Total (%) 12 31 21
United States and W Captive Users Ammonia producers Oil refiners Methanol producers Other	orld Hydrogen United Billion m ³ 33.7 32.9 8.5 3.4	Consumptions I States Share (%) 38 37 10 4	by End-Use Ca World Billion m ³ 273.7 105.4 40.5 13.6	tegory I Total Share (%) 61 23 9 3	U.S. Share of World Total (%) 12 31 21 25
United States and W Captive Users Ammonia producers Oil refiners Methanol producers Other Merchant users	orld Hydrogen United Billion m ³ 33.7 32.9 8.5 3.4 10.8	Consumptions I States Share (%) 38 37 10 4 12	by End-Use Ca World Billion m ³ 273.7 105.4 40.5 13.6 16.1	tegory I Total Share (%) 61 23 9 3 4	U.S. Share of World Total (%) 12 31 21 25 67

HAN_UNIVERSITY OF APPLIED SCIENCES

11

11

BES: Hydrogen lab

- Ventilated enclosure test cells of $4m^2,$ according to NEN-EN-IEC $_{60079\text{-}13}$
- 2 x 15 kW Bi-directional loads (for electrolysis and fuel cells)
- 1 kW 10 bar PEM electrolysis test setup
- H₂O and 02 concentration in H2 analyzer
- Potentiostat and impedance spectroscope with 30 A current booster
- Thermal camera
- Hydrogen 5.0 supply, 35 kg storage.
- 10 kW fuel cell test setup
- Various open-cathode fuel cell systems ranging from 12W to 1000W

HAN_UNIVERSITY OF APPLIED SCIENCES 12

BES: Hydrogen lab • 10 kW fuel cell system · Fuel cell stack from the Nedstack company · Aim to safely monitor the electrochemical reaction. · Ongoing work on Start-up and heating strategies, and secure shutdown • 200 W Alkaline Electrolyzer test setup · Aims at testing low power alkaline stacks · Alkaline stacks have the benefit of PFAS free membrane. • DCDC converter, max 200kW/400A • Zekalabs LB-1024-01 DC/DC REDPRJME · Aim: Electrical conversion for high power and/or high current applications HAN_UNIVERSITY OF APPLIED SCIENCES 13 13 **BES and Connectr**

